ЭНЕРГЕТИЧЕСКИЕ СИСТЕМЫ

II Международная научно-техническая конференция

Белгород – 2017

ISBN 978-5-361-00545-1

В сборнике представлены работы, освещающие современное состояние теоретических и экспериментальных исследований по следующим направлениям:
- теплозащита и теплоэнергетика;
- электроэнергетика и электротехника;
- энергетическое машиностроение;
- системы энергоснабжения;
- энергосбережение и энергоэффективность;
- альтернативные и возобновляемые источники энергии;
- экология энергетики;
- отопление и строительная теплофизика;
- Энергетика, энерго и ресурсосбережение в технологиях.

Сборник предназначен для широкого круга научных и инженерных работников, а также аспирантов, магистрантов и студентов высших учебных заведений.

Издание публикуется в авторской редакции.

Конференция организована при поддержке Российского фонда фундаментальных исследований (грант РФФИ № 17-08-20566).

УДК 620.9(082)
ББК 3

ISBN 978-5-361-00545-1

© Белгородский государственный технологический университет (БГТУ) им. В.Г. Шухова, 2017
ОГЛАВЛЕНИЕ

1. ТЕПЛОЭНЕРГЕТИКА И ТЕПЛОТЕХНИКА
 Амосов Н.Т., Владимиров Я.А. Определение предельных параметров зоны эффективного теплоснабжения ТЭЦ... 10
 Видлер А.В., Выборнов Д.В. Повышение эффективности работы блочной котельной... 17
 Долгов Н.В., Удовиченко З.В., Мукоед В.Е. Исследование режима работы теплообменного аппарата змеевикового типа.......................... 22
 Захаров В.И., Головач Ю.А. Анализ влияния диаметров и толщины стенок трубопроводов на вероятность безотказной работы газовых сетей...... 28
 Захаров В.И., Парамонов А.С. Определение давлений перед отверстиями повреждения газопроводов и величин утечек газа.................. 35
 Карнаух В.В., Бирюков А.Б., Шмелёва В.В. Теоретические исследования применения природных холодильных агентов на примере диоксида углерода в высокотемпературных тепловых насосах......................... 39
 Ключников О.Р., Астраханов М.В. Исследование лучистых составляющих теплонотопер материалов и покрытий.................................. 47
 Колесова Н.В., Монах С.И. Влияние толщины отложений на змеевик метангенка на интенсивность теплоотдачи к сжигаемой биомассе........ 50
 Кузнечов В.А., Трубаев П.А. Возможности и проблемы математического моделирования теплотехнологических процессов 54
 Луккин А.В., Кацан В.Н. Математическая модель конструктивно-поверхностного расчета конвективных элементов котлов ВК-21 62
 Назмееев Э.Р., Гуськин А.М. Разработка и исследование регуляторов давления газа... 69
 Орлов С.М., Луккин А.В. Циклон, как спиральная структура.............. 74
 Сергеев В.В., Амосов Н.Т., Анникова И.Д. Анализ эффективности генерации тепловой и электрической энергии ТЭЦ при использовании тепловых насосов большой мощности ... 80
 Степанов С.Ф., Коваленко В.В., Коваленко П.В. Повышение электрического КПД многоконтурной теплосиловой установки 85
 Таймаев М.А., Ахметова Р.В., Салтанова Е.А. Сжигание метано- водородной фракции в котлах с вихревыми горелками..................... 92
 Ткаченко А.Е., Гавриленко Б.В., Несемаков С.В. Методика повышения эффективности работы группы котлоагрегатов низкотемпературного кипящего слоя .. 100
Туманов А.Ю., Гуменюк В.И., Туманова М.М. Методика оценки и прогнозирования ущерба от чрезвычайных ситуаций техногенного, природного и террористического характера на плавучих атомных теплоэлектростанциях ... 107
Феоктистов А.Ю., Феоктистов Ю.А. Прогнозирование параметров влажного воздуха в процессах, определяемых угловым коэффициентом луча процесса ... 118
Хафизова А.Ш., Гусейчик А.М. Стабилизация гидравлического режима тепловых сетей малых теплоэнергетических предприятий ... 125

2. ЭЛЕКТРОЭНЕРГЕТИКА И ЭЛЕКТРОТЕХНИКА

Абдулвахаб Мохаммед Валид. Влияние несинусоидальности напряжения на потерю электроэнергии в распределительных сетях Ирака ... 129
Андрянов Д.П., Бадраян Н.П. К вопросу об оптимизации параметров динамических систем ... 134
Андрянов Д.П., Бадраян Н.П. Моделирование провисания провода ЛЭП с учетом воздействия климатических факторов ... 138
Артюхов И.И., Бочкарёв Д.А. Управление потоками энергии в локальной системе электроснабжения на основе генераторов с изменяемой скоростью вращения вала .. 143
Артюхов И.И., Краснова Н.Д., Руссева М.Ю. Система электроснабжения промышленного предприятия с промежуточным звеном постоянного тока .. 150
Бурянина Н.С., Королюк Ю.Ф., Лесных Е.В. Исключение апериодических составляющих в цифровых защитах ... 155
Бурянина Н.С., Рожина М.А. Электроснабжение «малых потребителей» от высоковольтных линий электропередачи ... 162
Воскресенская С.И., Бекиров Э.А., Насиров Г.Ф. Исследование работы однофазного инвертора при изменении комплексных сопротивлений фильтров .. 166
Гриценко С. В. Использование автоматизированной системы технического учета электроэнергии для расчета параметров автоматической компенсаторной установки ... 173
Дадабаев Ш.Т. Исследование пусковых переходных процессов высоковольтного синхронного электропривода с учетом нагрева и жаркого климата ... 179
Дмитриева О.С., Мадьяшев И.Н. Анализ работы трансформатора с применением термоэлектрических преобразователей ... 185
Жиленков А.А., Балабанов Р.Н. Анализ дистанционных методов диагностики изоляторов ЛЭП и ОРУ ... 189
Жилин Е.В. Оптимизация коэффициентов, характеризующих несинусоидальность и несимметрию питающего напряжения в системах электроснабжения ИЖС ... 195
Заазаринная Ю.Н., Губаева О.Г., Рахмаев Р.Н. Исследование феррорезонансных явлений в сетях 110-500 КВ ... 201
Заазаринная Ю.Н., Крайкова А.И. Потери мощности на корону на высоковольтных линиях и способы их снижения ... 206
Петухов С.В., Крипьянис М.В. Расчёт электрического поля блока измерительных обмоток трансформатора тока ТГФ-500 КВ 210
Рыбачёнов М.А., Хохлов Ю.И. Исследование влияния фазности выпрямительных агрегатов на качественные показатели электрической энергии преобразовательной подстанции электролиза цинка 214
Святинов Г.П., Зайцев Ю.М., Руссова Н.В., Михайлов А.В., Никитина О.А., Петров В.Н., Сазанов Д.С. Проектный расчет форсированного электромагнита постоянного напряжения с последовательно соединенными обмотками ... 219
Хаминова Р.Т., Бочкарёва Т.А. Анализ электромагнитной совместимости индуктивно-емкостного преобразователя с системой электроснабжения ... 225
Хворостенко С.В. Особенности определения критериев подобия для частотного электропривода ... 229
Чигвинцев С.В., Исмагулов И.К. Витковые замыкания обмотки фазы статора высоковольтного электродвигателя ... 234
Юдин А.А. Исследование алгоритмов оптимизации электрозвынегетических режимов по напряжению и реактивной мощности с использованием метода штрафных функций ... 238
Яблоков А.А., Меркулов А.Ю. Цифровая обработка сигналов в микропроцессорных УРЗА ... 244

3. ЭНЕРГЕТИЧЕСКОЕ МАШИНОСТРОЕНИЕ

Аксенов П.Л., Егоров М.Ю. Анализ методов интенсификации теплообмена в ядерных энергоустановках ... 251
Аксенов П.Л., Егоров М.Ю. Совершенствование конструкции парогенератора АЭС с использованием кольцевых пакеток-турбулизаторов ... 258
Губайдуллин Р.Р. Применение аддитивных технологий для исследования влияния формы каналов головки блока цилиндров на их пропускную способность ... 265
АНАЛИЗ ЭЛЕКТРОМАГНИТНОЙ СОВМЕСТИМОСТИ
ИНДУКТИВНО-ЕМКОСТНОГО ПРЕОБРАЗОВАТЕЛЯ
С СИСТЕМОЙ ЭЛЕКТРОСНАБЖЕНИЯ

ст. преп. Хазиева Р.Т.
магистрант Бочкарева Т.А.
Уфимский государственный нефтяной технический университет, г. Уфа

Аннотация. Устройства заряда емкостного накопителя, широко применяемые в нефтяной промышленности, оказывают неблагоприятное влияние на работу питающей сети, нефтное оборудование и месторождения. Значительное количество аппаратуры на промысле не должно быть подвержено электромагнитным помехам. В статье приводится анализ электромагнитной совместимости индуктивно-емкостного преобразователя, входящего в состав электрогидродинамической очистительной системы, с питающей сетью.

В нефтяной промышленности широко применяются устройства заряда емкостного накопителя (УЗЕН) на основе индуктивно-емкостного преобразователя (ИЕП) для получения высоких значений энергетических показателей. УЗЕН представляют собой источники питания, работающие в импульсных режимах со звеном повышенной частоты, и влияют на работу сети, качество электрической энергии, нефтяное оборудование и месторождения.

Целью статьи является анализ работы УЗЕН электрогидродинамической очистки насосно-компрессорных труб (НКТ) с точки зрения создания им электромагнитных помех (ЭМП) и оценки электромагнитной совместимости (ЭМС) с системами электроснабжения (СЭС) [1].

Источники вторичного электропитания (ИВЭП) УЗЕН содержат звенья повышенной частоты и функционируют в ключевых (импульсных) режимах, что приводит к росту ЭМП [2]. Нелинейные и периодические (импульсные) нагрузки, несинусоидальность (пульсация) ЭДС и нелинейность внутренних параметров источника и входных цепей потребителей искажают форму входного напряжения, приводит к увеличению тепловых потерь от токов высших гармоник, старению изоляции, увеличению массы фильтров блоков питания нагрузок, к возможности возникновения резонанса на высших гармониках [3].
УЗЕН используются в электрогидроимпульсной очистке насосно-компрессорных труб, на различных участках которых могут образовываться отложения (соли, минералы, парафины).

Принцип действия ИВЭП электрогидроимпульсной очистительной системы (ЭГОС) основан на работе автономного инвертора, коммутационный контур которого выполнен в виде многофункционального интегрированного электромагнитного компонента (МИЭК) [4]. Выполнение ЭГОС на основе МИЭК позволяет снизить массу, уменьшить габариты ИВЭП, а также обеспечить повышение качества электрической энергии за счет снижения уровня ЭМП и коэффициента несинусоидальности.

Рассмотрим блок-схему источника электропитания ЭГОС (рис. 1), который включает в себя следующие основные блоки:
 - питающая сеть (ПС);
 - трехфазный мостовой двухполупериодный выпрямитель (В);
 - емкостный фильтр (Ф);
 - автономный инвертор напряжения (АИН) с полностью управляемыми транзисторами;
 - индуктивно-емкостный преобразователь на базе МИЭК, подключенный к первичной обмотке согласующего трансформатора (Т);
 - высоковольтный выпрямительный столб (ВС);
 - разрядная цепь (РЦ).

Рис. 1. Блок-схема ИВЭП ЭГОС с ИЭП на основе МИЭК

Для анализа работы УЗЕН зададимся следующими исходными данными:
 - напряжение питающей сети 220 В;
 - частота питающей сети 50 Гц;
 - амплитуда напряжения на входе АИН (Eд) 539 В.

Выходное напряжение АИН может принимать значения напряжения источника питания той или иной полярности и формируется в виде последовательности прямоугольных импульсов. Спектр такого напряжения насыщен высшими гармониками, которые нужно отфильтровать. Для оценки качества выходного напряжения АИН используют коэффициент гармоник по напряжению, равный отношению действующего значения напряжения высших гармоник к полному действующему значению напряжения на нагрузке:
Разложение кривой выходного напряжения АИН в ряд Фурье приводит к выражению:

\[U_n = \frac{4 \cdot E_d}{\pi} \cdot (\cos(\omega \cdot t) + \frac{1}{3} \cdot \cos(3 \omega \cdot t) + \ldots + \frac{1}{n} \cdot \cos(n \omega \cdot t)) \]

Амплитуда основной гармоники:

\[U_{n(1)}^{\text{max}} = \frac{4 \cdot E_d}{\pi} \]

Действующее значение основной гармоники:

\[U_{n(1)} = \frac{U_{n(1)}^{\text{max}}}{\sqrt{2}} \]

Из разложения в ряд Фурье напряжения прямоугольной формы получим, что гармонический ряд содержит только нечетные гармоники, при этом амплитуды гармоник убывают пропорционально номеру гармоник n [5]. На рис. 2 представлен спектральный состав выходного напряжения АИН до 13 гармоник.

На рис. 3 представлен амплитудный спектр гармоник выходного напряжения АИН.

Рис. 2. Спектральный состав выходного напряжения АИН

Рис. 3. Амплитудный спектр гармоник выходного напряжения АИН

Коэффициент искажения синусоидальности кривой напряжения определяется по выражению:
\[K_u = \frac{\sqrt{\sum_{n=2}^{N} U_n^2}}{U_{n(1)}} \cdot 100, \]

где N – порядок последней из учитываемых гармонических составляющих напряжения.

Расчет по формулам, представленным выше, определил значения коэффициента гармоник по напряжению \(K_{u,n} = 22.8 \% \) и коэффициента искажения синусоидальности напряжения \(K_u = 44.5 \% \). Приведенные показатели в значительной мере превышают нормы, установленные ГОСТ 13109-97.

Таким образом, применение ИЭП на основе МИЭК в ЭГОС позволяет снизить уровень электромагнитных помех и несинусоидальность напряжения.

Библиографический список

ЭНЕРГЕТИЧЕСКИЕ СИСТЕМЫ

Сборник докладов
II Международной научно-технической конференции